Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711920

RESUMO

Background and purpose: Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods: The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results: When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion: This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.

2.
Med Phys ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656549

RESUMO

BACKGROUND: The pursuit of adaptive radiotherapy using MR imaging for better precision in patient positioning puts stringent demands on the hardware components of the MR scanner. Particularly in particle therapy, the dose distribution and thus the efficacy of the treatment is susceptible to beam attenuation from interfering materials in the irradiation path. This severely limits the usefulness of conventional imaging coils, which contain highly attenuating parts such as capacitors and preamplifiers in an unknown position, and requires development of a dedicated radiofrequency (RF) coil with close consideration of the materials and components used. PURPOSE: In MR-guided radiation therapy in the human torso, imaging coils with a large FOV and homogeneous B1 field distribution are required for reliable tissue classification. In this work, an imaging coil for MR-guided particle therapy was developed with minimal ion attenuation while maintaining flexibility in treatment. METHODS: A birdcage coil consisting of nearly radiation-transparent materials was designed and constructed for a closed-bore 1.5 T MR system. Additionally, the coil was mounted on a rotatable patient capsule for flexible positioning of the patient relative to the beam. The ion attenuation of the RF coil was investigated in theory and via measurements of the Bragg peak position. To characterize the imaging quality of the RF coil, transmit and receive field distributions were simulated and measured inside a homogeneous tissue-simulating phantom for various rotation angles of the patient capsule ranging from 0° to 345° in steps of 15°. Furthermore, simulations with a heterogeneous human voxel model were performed to better estimate the effect of real patient loading, and the RF coil was compared to the internal body coil in terms of SNR for a full rotation of the patient capsule. RESULTS: The RF coil (total water equivalent thickness (WET) ≈ 420 µm, WET of conductor ≈ 210 µm) can be considered to be radiation-transparent, and a measured transmit power efficiency (B1 +/ P $\sqrt {\mathrm{P}} $ ) between 0.17 µT/ W $\sqrt {\mathrm{W}} $ and 0.26 µT/ W $\sqrt {\mathrm{W}} $ could be achieved in a volume (Δz = 216 mm, complete x and y range) for the 24 investigated rotation angles of the patient capsule. Furthermore, homogeneous transmit and receive field distributions were measured and simulated in the transverse, coronal and sagittal planes in a homogeneous phantom and a human voxel model. In addition, the SNR of the radiation-transparent RF coil varied between 103 and 150, in the volume (Δz = 216 mm) of a homogeneous phantom and surpasses the SNR of the internal body coil for all rotation angles of the patient capsule. CONCLUSIONS: A radiation-transparent RF coil was developed and built that enables flexible patient to beam positioning via full rotation capability of the RF coil and patient relative to the beam, with results providing promising potential for adaptive MR-guided particle therapy.

3.
Cancers (Basel) ; 16(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672579

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive and lethal cancers. New treatment strategies are highly warranted. Particle radiotherapy could offer a way to overcome the radioresistant nature of pancreatic cancer because of its biological and physical characteristics. Within particles, helium ions represent an attractive therapy option to achieve the highest possible conformity while at the same time protecting the surrounding normal tissue. The aim of this study was to evaluate the cytotoxic efficacy of helium ion irradiation in pancreatic cancer in vitro. METHODS: Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and helium ions at various doses and treated with gemcitabine. Photon irradiation was performed with a biological cabin X-ray irradiator, and helium ion irradiation was performed with a spread-out Bragg peak using the raster scanning technique at the Heidelberg Ion Beam Therapy Center (HIT). The cytotoxic effect on pancreatic cancer cells was measured with clonogenic survival. The survival curves were compared to the predicted curves that were calculated via the modified microdosimetric kinetic model (mMKM). RESULTS: The experimental relative biological effectiveness (RBE) of helium ion irradiation ranged from 1.0 to 1.7. The predicted survival curves obtained via mMKM calculations matched the experimental survival curves. Mainly additive cytotoxic effects were observed for the cell lines AsPC-1, BxPC-3 and Panc-1. CONCLUSION: Our results demonstrate the cytotoxic efficacy of helium ion radiotherapy in pancreatic cancer in vitro as well as the capability of mMKM calculation and its value for biological plan optimization in helium ion therapy for pancreatic cancer. A combined treatment of helium irradiation and chemotherapy with gemcitabine leads to mainly additive cytotoxic effects in pancreatic cancer cell lines. The data generated in this study may serve as the radiobiological basis for future experimental and clinical works using helium ion radiotherapy in pancreatic cancer treatment.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38437925

RESUMO

PURPOSE: Our objective was to develop a methodology for assessing the linear energy transfer (LET) and relative biological effectiveness (RBE) in clinical proton and helium ion beams using fluorescent nuclear track detectors (FNTDs). METHODS AND MATERIALS: FNTDs were exposed behind solid water to proton and helium (4He) ion spread-out Bragg peaks. Detectors were imaged with a confocal microscope, and the LET spectra were derived from the fluorescence intensity. The track- and dose-averaged LET (LETF and LETD, respectively) were calculated from the LET spectra. LET measurements were used as input on RBE models to estimate the RBE. Human alveolar adenocarcinoma cells (A549) were exposed at the same positions as the FNTDs. The RBE was calculated from the resulting survival curves. All measurements were compared with Monte Carlo simulations. RESULTS: For protons, average relative differences between measurements and simulations were 6% and 19% for LETF and LETD, respectively. For helium ions, the same differences were 11% for both quantities. The position of the experimental LET spectra primary peaks agreed with the simulations within 9% and 14% for protons and helium ions, respectively. For the RBE models using LETD as input, FNTD-based RBE values ranged from 1.02 ± 0.01 to 1.25 ± 0.04 and from 1.08 ± 0.09 to 2.68 ± 1.26 for protons and helium ions, respectively. The average relative differences between these values and simulations were 2% and 4%. For A549 cells, the RBE ranged from 1.05 ± 0.07 to 1.47 ± 0.09 and from 0.89 ± 0.06 to 3.28 ± 0.20 for protons and helium ions, respectively. Regarding the RBE-weighted dose (2.0 Gy at the spread-out Bragg peak), the differences between simulations and measurements were below 0.10 Gy. CONCLUSIONS: This study demonstrates for the first time that FNTDs can be used to perform direct LET measurements and to estimate the RBE in clinical proton and helium ion beams.

5.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295403

RESUMO

Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents ourenergy paintingmethod, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant water-equivalent thickness (WET) ranges.Approach.A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to WET. They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions.Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of 1.82(5) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %.Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation.


Assuntos
Hélio , Água , Humanos , Hélio/uso terapêutico , Radiografia , Íons , Imagens de Fantasmas
6.
Clin Transl Radiat Oncol ; 42: 100662, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37576069

RESUMO

Purpose: The in vitro clonogenic assay (IVCA) is the mainstay of quantitative radiobiology. Here, we investigate the benefit of a time-resolved IVCA version (trIVCA) to improve the quantification of clonogenic survival and relative biological effectiveness (RBE) by analyzing cell colony growth behavior. Materials & Methods: In the IVCA, clonogenicity classification of cell colonies is performed based on a fixed colony size threshold after incubation. In contrast, using trIVCA, we acquire time-lapse microscopy images during incubation and track the growth of each colony using neural-net-based image segmentation. Attributes of the resulting growth curves are then used as predictors for a decision tree classifier to determine clonogenicity of each colony. The method was applied to three cell lines, each irradiated with 250 kV X-rays in the range 0-8 Gy and carbon ions of high LET (100 keV/µm, dose-averaged) in the range 0-2 Gy. We compared the cell survival curves determined by trIVCA to those from the classical IVCA across different size thresholds and incubation times. Further, we investigated the impact of the assaying method on RBE determination. Results: Size distributions of abortive and clonogenic colonies overlap consistently, rendering perfect separation via size threshold unfeasible at any readout time. This effect is dose-dependent, systematically inflating the steepness and curvature of cell survival curves. Consequently, resulting cell survival estimates show variability between 3% and 105%. This uncertainty propagates into RBE calculation with variability between 8% and 25% at 2 Gy.Determining clonogenicity based on growth curves has an accuracy of 95% on average. Conclusion: The IVCA suffers from substantial uncertainty caused by the overlap of size distributions of delayed abortive and clonogenic colonies. This impairs precise quantification of cell survival and RBE. By considering colony growth over time, our method improves assaying clonogenicity.

7.
Med Phys ; 50(7): 4590-4599, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36940235

RESUMO

BACKGROUND: Magnetic resonance-guided proton therapy is promising, as it combines high-contrast imaging of soft tissue with highly conformal dose delivery. However, proton dosimetry in magnetic fields using ionization chambers is challenging since the dose distribution as well as the detector response are perturbed. PURPOSE: This work investigates the effect of the magnetic field on the ionization chamber response, and on the polarity and ion recombination correction factors, which are essential for the implementation of a proton beam dosimetry protocol in the presence of magnetic fields. METHODS: Three Farmer-type cylindrical ionization chambers, the 30013 with 3 mm inner radius (PTW, Freiburg, Germany) and two custom built chambers "R1" and "R6" with 1 and 6 mm inner radii respectively were placed at the center of an experimental electromagnet (Schwarzbeck Mess - Elektronik, Germany) 2 cm depth of an in-house developed 3D printed water phantom. The detector response was measured for a 3 × 10 cm2 field of mono-energetic protons 221.05 MeV/u for the three chambers, and with an additional proton beam of 157.43 MeV/u for the chamber PTW 30013. The magnetic flux density was varied between 0.1 and 1.0 Tesla in steps of 0.1 Tesla. RESULTS: At both energies, the ionization chamber PTW 30013 showed a non-linear response as a function of the magnetic field strength, with a decrease of the ionization chamber response of up to 0.27% ± 0.06% (1 SD) at 0.2 Tesla, followed by a smaller effect at higher magnetic field strength. For the chamber R1, the response decreased slightly with the magnetic field strength up to 0.45% ± 0.12% at 1 Tesla, and for the chamber R6, the response decreased up to 0.54% ± 0.13% at 0.1 Tesla, followed by a plateau up to 0.3 Tesla, and a weaker effect at higher magnetic field strength. The dependence of the polarity and recombination correction factor on the magnetic field was ⩽0.1% for the chamber PTW 30013. CONCLUSIONS: The magnetic field has a small but significant effect on the chamber response in the low magnetic field region for the chamber PTW 30013 and for R6, and in the high magnetic field region for the chamber R1. Corrections may be necessary for ionization chamber measurements, depending on both the chamber volume and the magnetic flux density. No significant effect of the magnetic field on the polarity and recombination correction factor was detected in this work for the ionization chamber PTW 30013.


Assuntos
Prótons , Rádio (Anatomia) , Humanos , Fazendeiros , Radiometria/métodos , Campos Magnéticos , Fótons
8.
Int J Radiat Oncol Biol Phys ; 116(4): 935-948, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681200

RESUMO

PURPOSE: Helium ions offer intermediate physical and biological properties to the clinically used protons and carbon ions. This work presents the commissioning of the first clinical treatment planning system (TPS) for helium ion therapy with active beam delivery to prepare the first patients' treatment at the Heidelberg Ion-Beam Therapy Center (HIT). METHODS AND MATERIALS: Through collaboration between RaySearch Laboratories and HIT, absorbed and relative biological effectiveness (RBE)-weighted calculation methods were integrated for helium ion beam therapy with raster-scanned delivery in the TPS RayStation. At HIT, a modified microdosimetric kinetic biological model was chosen as reference biological model. TPS absorbed dose predictions were compared against measurements with several devices, using phantoms of different complexities, from homogeneous to heterogeneous anthropomorphic phantoms. RBE and RBE-weighted dose predictions of the TPS were verified against calculations with an independent RBE-weighted dose engine. The patient-specific quality assurance of the first treatment at HIT using helium ion beam with raster-scanned delivery is presented considering standard patient-specific measurements in a water phantom and 2 independent dose calculations with a Monte Carlo or an analytical-based engine. RESULTS: TPS predictions were consistent with dosimetric measurements and independent dose engines computations for absorbed and RBE-weighted doses. The mean difference between dose measurements to the TPS calculation was 0.2% for spread-out Bragg peaks in water. Verification of the first patient treatment TPS predictions against independent engines for both absorbed and RBE-weighted doses presents differences within 2% in the target and with a maximum deviation of 3.5% in the investigated critical regions of interest. CONCLUSIONS: Helium ion beam therapy has been successfully commissioned and introduced into clinical use. Through comprehensive validation of the absorbed and RBE-weighted dose predictions of the RayStation TPS, the first clinical TPS for helium ion therapy using raster-scanned delivery was employed to plan the first helium patient treatment at HIT.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Hélio/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Dosagem Radioterapêutica , Método de Monte Carlo , Prótons , Água
9.
Med Phys ; 50(4): 2385-2401, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36345603

RESUMO

BACKGROUND: Radiation fields encountered in proton therapy (PT) and ion-beam therapy (IBT) are characterized by a variable linear energy transfer (LET), which lead to a variation of relative biological effectiveness and also affect the response of certain dosimeters. Therefore, reliable tools to measure LET are advantageous to predict and correct LET effects. Fluorescent nuclear track detectors (FNTDs) are suitable to measure LET spectra within the range of interest for PT and IBT, but so far the accuracy and precision have been challenged by sensitivity variations between individual crystals. PURPOSE: To develop a novel methodology to correct changes in the fluorescent intensity due to sensitivity variations among FNTDs. This methodology is based on exposing FNTDs to alpha particles in order to derive a detector-specific correction factor. This will allow us to improve the accuracy and precision of LET spectra measurements with FNTDs. METHODS: FNTDs were exposed to alpha particles. Afterward, the detectors were irradiated to monoenergetic protons, 4 He-, 12 C-, and 16 O-ions. At each step, the detectors were imaged with a confocal laser scanning microscope. The tracks were reconstructed and analyzed using in-house developed tools. Alpha-particle tracks were used to derive a detector-specific sensitivity correction factor ( k s , i ${k_{s,i}}$ ). Proton, 4 He-, 12 C-, and 16 O-ion tracks were used to establish a traceable calibration curve that relates the fluorescence intensity with the LET in water ( L E T H 2 O $LE{T_{{{\rm{H}}_2}{\rm{O}}}}$ ). FNTDs from a second batch were exposed and analyzed following the same procedures, to test if k s , i ${k_{s,i}}$ can be used to extend the applicability of the calibration curve to detectors from different batches. Finally, a set of blind tests was performed to assess the accuracy of the proposed methodology without user bias. Throughout all stages, the main sources of uncertainty were evaluated. RESULTS: Based on a sample of 100 FNTDs, our findings show a high sensitivity heterogeneity between FNTDs, with k s , i ${k_{s,i}}$ having values between 0.57 and 2.55. The fitting quality of the calibration curve, characterized by the mean absolute percentage residuals and correlation coefficient, was improved when k s , i ${k_{s,i}}$ was considered. Results for detectors from the second batch show that, if the fluorescence signal is corrected by k s , i ${k_{s,i}}$ , the differences in the predicted L E T H 2 O $LE{T_{{{\rm{H}}_2}{\rm{O}}}}$ with respect to the reference set are reduced from 55%, 141%, 41%, and 186% to 4.2%, 6.5%, 5.0%, and 11.0%, for protons, 4 He-, 12 C-, and 16 O-ions, respectively. The blind tests showed that it is possible to measure the track- and dose-average L E T H 2 O $LE{T_{{{\rm{H}}_2}{\rm{O}}}}$ with an accuracy of 0.3%, 16%, and 9.6% and 1.7%, 28%, and 30% for protons, 12 C-ions and mixed beams, respectively. On average, the combined uncertainty of the measured L E T H 2 O $LE{T_{{{\rm{H}}_2}{\rm{O}}}}$ was 11%, 13%, 21%, and 26% for protons, 4 He-, 12 C-, and 16 O-ions, respectively. These values were increased by a mean factor of 2.0 when k s , i ${k_{s,i}}$ was not applied. CONCLUSIONS: We have demonstrated for the first time that alpha particles can be used to derive a detector-specific sensitivity correction factor. The proposed methodology allows us to measure LET spectra using FNTD-technology, with a degree of accuracy and precision unreachable before with sole experimental approaches.


Assuntos
Transferência Linear de Energia , Prótons , Partículas alfa/uso terapêutico , Radiometria/métodos , Íons
10.
Phys Med ; 104: 136-144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403543

RESUMO

PURPOSE: Radiotherapy escalating dose rates above 50Gys-1, might offer a great potential in treating tumours while further sparing healthy tissue. However, these ultra-high intensities of FLASH-RT lead to new challenges with regard to dosimetry and beam monitoring. FLASH experiments at HIT (Heidelberg Ion Beam Therapy Center) and at GSI (GSI Helmholtz Centre for Heavy Ion Research) have shown a significant loss of signal in the beam monitoring system due to recombination effects. To enable accurate beam monitoring, this work investigates the recombination loss of different fill gases in the plane parallel ionisation chambers (ICs). METHODS: Therefore, saturation curves at high intensities were measured for the currently used fill gases Ar/CO2 (80/20) and pure He and also for He/CO2 mixtures as alternative fill gases. Furthermore, breakdown voltages and ion mobilities were measured in ICs filled with He/CO2 mixtures. A numerical model for volume recombination in plane parallel ionisation chambers was developed and implemented in Python. This includes a novel simulation method of the space charge effect from the charge carriers in the detector volume and predicts a significant effect on the electric field for high intensity beams. RESULTS: Even at high intensities the He/CO2 mixtures allow operation of the ICs at an electric field strength of 2 kVcm-1 or more which reduces recombination to negligible levels at intensities larger than 3 × 101012C-ions per second. Our measurements show that added fractions of CO2 to He decrease the ion mobility in the fill gas but significantly increase the breakdown voltage in the ICs compared to pure He.


Assuntos
Radioterapia , Dióxido de Carbono , Hélio , Humanos
11.
Cancer Lett ; 550: 215928, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183858

RESUMO

Radiotherapy can act as an in situ vaccine, activating preventive tumor-specific immune responses in patients. Although carbon ion radiotherapy has superior biophysical properties over conventional photon irradiation, the immunological effects induced by this radiation type are poorly understood. Multiple strategies combining radiotherapy with immune checkpoint inhibition (radioimmunotherapy) to enhance antitumor immunity have been described; however, immune cell composition in tumors following radioimmunotherapy with carbon ions remains poorly explored. We developed a bilateral tumor model based on time-shifted subcutaneous injection of murine Her2+ EO771 tumor cells into immune-competent mice followed by selective irradiation of the primary tumor. αCTLA4-, but not αPD-L1-based radioimmunotherapy, induced complete tumor rejection and mediated the eradication of even non-irradiated, distant tumors. Cured mice were protected against the EO771 rechallenge, indicating long-lasting, tumor-specific immunological memory. Single-cell RNA sequencing and flow cytometric analyses of irradiated tumors revealed activation of NK cells and distinct tumor-associated macrophage clusters with upregulated expression of TNF and IL1 responsive genes. Distant tumors in the irradiated mice showed higher frequencies of naïve T cells activated upon the combination with CTLA4 blockade. Thus, radioimmunotherapy with carbon ions plus CTLA4 inhibition reshapes the tumor-infiltrating immune cell composition and can induce complete rejection even of non-irradiated tumors. Our data suggest combining radiotherapy approaches with CTLA4 blockade to achieve durable antitumor immunity. Evaluation of future radioimmunotherapy approaches should not be restricted to immunological impact at the irradiation site but should also consider systemic immunological effects on non-irradiated tumors.


Assuntos
Radioterapia com Íons Pesados , Inibidores de Checkpoint Imunológico , Animais , Antígeno CTLA-4 , Carbono , Linhagem Celular Tumoral , Memória Imunológica , Camundongos
12.
Radiother Oncol ; 173: 223-230, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714806

RESUMO

AIM: To analyze the long-term effectiveness of carbon ions relative to protons in the prospective randomized controlled ion prostate irradiation (IPI) trial. METHODS: Effectiveness via PSA assessment in a randomized study on prostate irradiation with 20x3.3 Gy(RBE) protons versus carbon ions was analyzed in 92 patients. Proton RBE was based on a fixed RBE of 1.1 while the local effect model (LEM) I and an α/ß = 2 Gy was used for carbon ions. The dose in the prostate was recalculated based on the delivered treatment plan using LEM I and LEM IV and different α/ß values. RESULTS: Five-year overall and progression free survival was 98% and 85% with protons and 91% and 50% with carbon ions, respectively, with the latter being unexpectedly low compared to Japanese carbon ion data and rather corresponding to a photon dose <72 Gy in 2 Gy fractions. According to LEM I and the applied α/ß-value of 2 Gy, the applied carbon ion dose in 2 Gy(RBE) fractions (EQD2) was 87.46 Gy(RBE). Recalculations confirmed a strong dependence of RBE-weighted dose on the α/ß ratio as well as on the RBE-model. CONCLUSION: The data demonstrate a significant lower effectiveness of the calculated RBE-weighted dose in the carbon ion as compared to the proton arm. LEM I and an α/ß = 2 Gy overestimates the RBE for carbon ions in prostate cancer treatment. Adjusting the biological dose calculation by using LEM I with α/ß = 4 Gy could be a pragmatic way to safely escalate dose in carbon ion radiotherapy for prostate cancer.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Carbono/uso terapêutico , Radioterapia com Íons Pesados/métodos , Humanos , Íons , Masculino , Estudos Prospectivos , Neoplasias da Próstata/radioterapia , Prótons , Eficiência Biológica Relativa
13.
Radiother Oncol ; 170: 224-230, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367526

RESUMO

BACKGROUND AND PURPOSE: Determination of the relative biological effectiveness (RBE) of helium ions as a function of linear energy transfer (LET) for single and split doses using the rat cervical spinal cord as model system for late-responding normal tissue. MATERIAL AND METHODS: The rat cervical spinal cord was irradiated at four different positions within a 6 cm spread-out Bragg-peak (SOBP) (LET 2.9, 9.4, 14.4 and 20.7 keV/µm) using increasing levels of single or split doses of helium ions. Dose-response curves were determined and based on TD50-values (dose at 50% effect probability using paresis II as endpoint), RBE-values were derived for the endpoint of radiation-induced myelopathy. RESULTS: With increasing LET, RBE-values increased from 1.13 ± 0.04 to 1.42 ± 0.05 (single dose) and 1.12 ± 0.03 to 1.50 ± 0.04 (split doses) as TD50-values decreased from 21.7 ± 0.3 Gy to 17.3 ± 0.3 Gy (single dose) and 30.6 ± 0.3 Gy to 22.9 ± 0.3 Gy (split doses), respectively. RBE-models (LEM I and IV, mMKM) deviated differently for single and split doses but described the RBE variation in the high-LET region sufficiently accurate. CONCLUSION: This study established the LET-dependence of the RBE for late effects in the central nervous system after single and split doses of helium ions. The results extend the existing database for protons and carbon ions and allow systematic testing of RBE-models. While the RBE-values of helium were generally lower than for carbon ions, the increase at the distal edge of the Bragg-peak was larger than for protons, making detailed RBE-modeling necessary.


Assuntos
Hélio , Transferência Linear de Energia , Animais , Carbono , Relação Dose-Resposta à Radiação , Humanos , Íons , Prótons , Ratos , Eficiência Biológica Relativa , Medula Espinal
14.
Front Oncol ; 12: 830080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402273

RESUMO

Fiducial markers are used for image guidance to verify the correct positioning of the target for the case of tumors that can suffer interfractional motion during proton therapy. The markers should be visible on daily imaging, but at the same time, they should produce minimal streak artifacts in the CT scans for treatment planning and induce only slight dose perturbations during particle therapy. In this work, these three criteria were experimentally investigated at the Heidelberg Ion Beam Therapy Center. Several small fiducial markers with different geometries and materials (gold, platinum, and carbon-coated ZrO2) were evaluated. The streak artifacts on treatment planning CT were measured with and without iMAR correction, showing significantly smaller artifacts from markers lighter than 6 mg and a clear improvement with iMAR correction. Daily imaging as X-ray projections and in-room mobile CT were also performed. Markers heavier than 6 mg showed a better contrast in the X-ray projections, whereas on the images from the in-room mobile CT, all markers were clearly visible. In the other part of this work, fluence perturbations of proton beams were measured for the same markers by using a tracker system of several high spatial resolution CMOS pixel sensors. The measurements were performed for single-energy beams, as well as for a spread-out Bragg peak. Three-dimensional fluence distributions were computed after reconstructing all particle trajectories. These measurements clearly showed that the ZrO2 markers and the low-mass gold/platinum markers (0.35mm diameter) induce perturbations being 2-3 times lower than the heavier gold or platinum markers of 0.5mm diameter. Monte Carlo simulations, using the FLUKA code, were used to compute dose distributions and showed good agreement with the experimental data after adjusting the phase space of the simulated proton beam compared to the experimental beam.

15.
Front Biosci (Schol Ed) ; 14(1): 2, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35320913

RESUMO

While the primary purpose of radiotherapy (RT) is the elimination of cancer cells by inducing DNA-damage, considerable evidence emerges that anti-neoplastic effects extend beyond mere tumor cell killing. These secondary effects are based on activation of dendritic cells (DCs) via induction of antitumoral immune reactions. However, there is an ongoing debate whether or not irradiation of the DCs themselves may negatively affect their maturation and functionality. Human monocytes were irradiated with different absorbed doses (1 × 15 Gy relative biological effectiveness (RBE), 5 × 2 Gy (RBE), 1 × 0.5 Gy (RBE)) with photons, protons and carbon ions. Differentiation and maturation of DCs were assessed by staining of corresponding cell surface molecules and functional analysis of irradiated DCs was based on in vitro analysis of phagocytosis, migration and IL-12 secretion. Irradiation of CD14-positive DCs did not alter surface phenotypes of immature DCs and mature DCs. Not only differentiation, but also functionality of immature DCs regarding phagocytosis, migration and IL-12 secretion capacity was not negatively influenced through RT with photons, protons or carbon ions as well as with different dose levels. After proton irradiation migratory capacity of immature DCs was increased. Our experiments reveal that phenotypic maturation of DCs remains unchanged after RT with different fractionations and after irradiation with particle therapy. Unaffected functionality (phagocytosis, migration and cytokine secretion) after RT of DCs indicated possible persistent potential for inducing adaptive immune response. Additional effects on the immunogenic potential of DCs will be investigated by further functional assays.


Assuntos
Células Dendríticas , Prótons , Carbono/farmacologia , Diferenciação Celular , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Monócitos/metabolismo , Fótons
16.
Int J Radiat Oncol Biol Phys ; 113(3): 614-623, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196536

RESUMO

PURPOSE: To investigate brain tissue response to ultra-high dose rate (uHDR, FLASH) and standard dose rate (SDR) proton irradiations in the Bragg peak region. METHODS AND MATERIALS: Active scanning uHDR delivery was established for proton beams for investigation of dose rate effects between clinical SDR and uHDR at ∼10 Gy in the Bragg peak region (dose-averaged linear energy transfer [LETD] ranging from 4.5 to 10.2 keV µm-1 ). Radiation- induced injury of neuronal tissue was assessed by studying the DNA double strand break repair kinetics surrogated by nuclear γH2AX staining (radiation induced foci [RIF]), microvascular density and structural integrity (MVD, CD31+ endothelium), and inflammatory microenvironmental response (CD68+ microglia/macrophages and high mobility group box protein 1[HMGB]) in healthy C57BL/6 mouse brains. RESULTS: Averaged dose rates achieved were 0.17 Gy/s (SDR) and 120 Gy/s (uHDR). The fraction of RIF-positive cells increased after SDR ∼10-fold, whereas a significantly lower fraction of RIF-positive cells was found after uHDR versus SDR (∼2 fold, P < .0001). Moreover, uHDR substantially preserved the microvascular architecture and reduced microglia/macrophage regulated associated inflammation as compared with SDR. CONCLUSIONS: The feasibility of uHDR raster scanning proton irradiation is demonstrated to elicit FLASH sparing neuroprotective effects compared to SDR in a preclinical in vivo model.


Assuntos
Fármacos Neuroprotetores , Terapia com Prótons , Lesões por Radiação , Animais , Transferência Linear de Energia , Camundongos , Camundongos Endogâmicos C57BL , Terapia com Prótons/métodos , Prótons
17.
Med Phys ; 49(1): 474-487, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709667

RESUMO

PURPOSE: Measurements comparing relative stopping power (RSP) accuracy of state-of-the-art systems representing single-energy and dual-energy computed tomography (SECT/DECT) with proton CT (pCT) and helium CT (HeCT) in biological tissue samples. METHODS: We used 16 porcine and bovine samples of various tissue types and water, covering an RSP range from 0.90 ± 0.06 to 1.78 ± 0.05. Samples were packed and sealed into 3D-printed cylinders ( d = 2  cm, h = 5  cm) and inserted into an in-house designed cylindrical polymethyl methacrylate (PMMA) phantom ( d = 10  cm, h = 10  cm). We scanned the phantom in a commercial SECT and DECT (120 kV; 100  and 140 kV/Sn (tin-filtered)); and acquired pCT and HeCT ( E ∼ 200  MeV/u, 2 ∘ steps, ∼ 6.2 × 10 6 (p)/ ∼ 2.3 × 10 6 (He) particles/projection) with a particle imaging prototype. RSP maps were calculated from SECT/DECT using stoichiometric methods and from pCT/HeCT using the DROP-TVS algorithm. We estimated the average RSP of each tissue per modality in cylindrical volumes of interest and compared it to ground truth RSP taken from peak-detection measurements. RESULTS: Throughout all samples, we observe the following root-mean-squared RSP prediction errors ± combined uncertainty from reference measurement and imaging: SECT 3.10 ± 2.88%, DECT 0.75 ± 2.80%, pCT 1.19 ± 2.81%, and HeCT 0.78 ± 2.81%. The largest mean errors ± combined uncertainty per modality are SECT 8.22 ± 2.79% in cortical bone, DECT 1.74 ± 2.00% in back fat, pCT 1.80 ± 4.27% in bone marrow, and HeCT 1.37 ± 4.25% in bone marrow. Ring artifacts were observed in both pCT and HeCT reconstructions, imposing a systematic shift to predicted RSPs. CONCLUSION: Comparing state-of-the-art SECT/DECT technology and a pCT/HeCT prototype, DECT provided the most accurate RSP prediction, closely followed by particle imaging. The novel modalities pCT and HeCT have the potential to further improve on RSP accuracies with work focusing on the origin and correction of ring artifacts. Future work will study accuracy of proton treatment plans using RSP maps from investigated imaging modalities.


Assuntos
Terapia com Prótons , Tomografia Computadorizada por Raios X , Animais , Calibragem , Bovinos , Imagens de Fantasmas , Prótons , Suínos
18.
Cancer Lett ; 524: 172-181, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688844

RESUMO

The influence of high-linear energy transfer (LET) particle radiation on the functionalities of mesenchymal stromal cells (MSCs) is largely unknown. Here, we analyzed the effects of proton (1H), helium (4He), carbon (12C) and oxygen (16O) ions on human bone marrow-MSCs. Cell cycle distribution and apoptosis induction were examined by flow cytometry, and DNA damage was quantified using γH2AX immunofluorescence and Western blots. Relative biological effectiveness values of MSCs amounted to 1.0-1.1 for 1H, 1.7-2.3 for 4He, 2.9-3.4 for 12C and 2.6-3.3 for 16O. Particle radiation did not alter the MSCs' characteristic surface marker pattern, and MSCs maintained their multi-lineage differentiation capabilities. Apoptosis rates ranged low for all radiation modalities. At 24 h after irradiation, particle radiation-induced ATM and CHK2 phosphorylation as well as γH2AX foci numbers returned to baseline levels. The resistance of human MSCs to high-LET irradiation suggests that MSCs remain functional after exposure to moderate doses of particle radiation as seen in normal tissues after particle radiotherapy or during manned space flights. In the future, in vivo models focusing on long-term consequences of particle irradiation on the bone marrow niche and MSCs are needed.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , Histonas/genética , Células-Tronco Mesenquimais/efeitos da radiação , Células-Tronco/efeitos da radiação , Medicina Aeroespacial , Apoptose/genética , Apoptose/efeitos da radiação , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Carbono/efeitos adversos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem da Célula/genética , Linhagem da Célula/efeitos da radiação , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos da radiação , Hélio/efeitos adversos , Humanos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/efeitos adversos , Prótons/efeitos adversos , Voo Espacial , Células-Tronco/metabolismo
19.
Int J Radiat Oncol Biol Phys ; 112(2): 499-513, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534627

RESUMO

PURPOSE: Infiltrative growth pattern is a hallmark of glioblastoma (GBM). Radiation therapy aims to eradicate microscopic residual GBM cells after surgical removal of the visible tumor bulk. However, in-field recurrences remain the major pattern of therapy failure. We hypothesized that the radiosensitivity of peripheral invasive tumor cells (peri) may differ from the predominantly investigated tumor bulk. METHODS AND MATERIALS: Invasive GBM populations were generated via debulking of the visible tumor core and serial orthotopic transplantation of peri cells, and sustained proinvasive phenotype of peri cells was confirmed in vitro by scratch assay and time lapse imaging. In parallel, invasive GBM cells were selected by transwell assay and from peri cells of patient-derived 3-dimensional spheroid cultures. Transcriptome analysis deciphered a GBM invasion-associated gene signature, and functional involvement of key pathways was validated by pharmacologic inhibition. RESULTS: Compared with the bulk cells, invasive GBM populations acquired a radioresistant phenotype characterized by increased cell survival, reduced cell apoptosis, and enhanced DNA double-strand break repair proficiency. Transcriptome analysis revealed a reprograming of invasive cells toward augmented activation of epidermal growth factor receptor- and nuclear factor-κB-related pathways, whereas metabolic processes were downregulated. An invasive GBM score derived from this transcriptional fingerprint correlated well with patient outcome. Inhibition of epidermal growth factor receptor and nuclear factor-κB signaling resensitized invasive cells to irradiation. Invasive cells were eradicated with similar efficacy by particle therapy with carbon ions. CONCLUSIONS: Our data indicate that invasive tumor cells constitute a phenotypically distinct and highly radioresistant GBM subpopulation with prognostic impact that may be vulnerable to targeted therapy and carbon ions.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Tolerância a Radiação/genética , Transdução de Sinais
20.
Int J Radiat Oncol Biol Phys ; 112(4): 1012-1022, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813912

RESUMO

PURPOSE: To establish a beam monitoring and dosimetry system to enable the FLASH dose rate carbon ion irradiation and investigate, at different oxygen concentrations, the in vitro biological response in comparison to the conventional dose rate. METHODS AND MATERIALS: CHO-K1 cell response to irradiation at different dose rates and at different levels of oxygenation was studied using clonogenic assay. The Heidelberg Ion-Beam Therapy Center (HIT) synchrotron, after technical improvements, was adjusted to extract ≥5 × 108 12C ions within approximately 150 milliseconds. The beam monitors were filled with helium. RESULTS: The FLASH irradiation with beam scanning yields a dose of 7.5 Gy (homogeneity of ±5%) for a 280 MeV/u beam in a volume of at least 8 mm in diameter and a corresponding dose rate of 70 Gy/s (±20%). The dose repetition accuracy is better than 2%, the systematic uncertainty is better than 2%. Clonogenic assay demonstrates a significant FLASH sparing effect which is strongly oxygenation-dependent and mostly pronounced at 0.5% O2 but absent at 0% and 21% O2. CONCLUSION: The FLASH dose rates >40 Gy/s were achieved with carbon beams. Cell survival analysis revealed FLASH dose rate sparing in hypoxia (0.5%-4% O2).


Assuntos
Radioterapia com Íons Pesados , Carbono , Hélio , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA